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Abstract The interaction of large-amplitude water waves with a compliant floating raft such as a sea-ice floe or
a pontoon-type VLFS (very large floating structure) is considered. The solution is expressed as a series using a
perturbation expansion, the first two components of which are solved inductively using a boundary-integral method.
The primary interest of this paper is to the ways in which the second-order potential can be modified in order to apply
the boundary-integral method and to the comparison of results with those derived using eigenfunction matching
methods.
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1 Introduction

Although (see [1]) there has been an abundance of theoretical papers focused upon flexural-gravity wave propagation
in sea-ice [2–14], since the review article [15] there has been remarkably little work dealing with large-amplitude
waves [16–18]. Yet, with the onset of global climate change and the attendant increase in extreme weather events,
including storms, it is inevitable that high-energy ocean surface waves will occur more frequently and that these will
drive further into the polar and subpolar seas, either as free-surface waves or as flexural-gravity waves travelling
at the ice–water interface. Concomitantly, ice fields will be broken up more readily at greater penetrations than
now—due to the higher waves but also to the weaker sea-ice arising on a warmer Earth, causing enhanced melting
and a decrease in ice concentration. The greater number of polynyas and leads in the pack ice will potentially impact
on regional climate because sea-ice affects the way the atmosphere couples to the ocean. Taken in the context of
global warming, this is of immediate topical significance, first because temporal adjustments in pack ice serve as a
proxy of climate change [19–21] but also because more open water will attract intensified oil and gas exploration and
production accompanied by expanded offshore engineering, fabrication and management activities. Accordingly,
there are compelling practical reasons for augmenting the linear studies cited above to include higher-amplitude
waves but also to incorporate plate theories that properly take into account large-amplitude deflections.
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In this context and in the manner of [22,23] we consider in this paper how an isolated flexible ice floe or raft
of specified dimension responds to ocean waves—in this case of higher order. Notwithstanding that the immediate
relevance of the work is to polar marine geophysics and, as a consequence, to offshore Arctic engineering and
hydrocarbon extraction, this is only one possible application and for this reason we retain and signal generality by
calling our floating body a compliant raft.

Discounting Jules Verne’s idea of the seagoing ‘Standard Island’ introduced in his wonderful book L’île à Hélice
[24], other applications that are each likely to be acted upon by significant seas include, for example, offshore port
facilities that may incorporate provision for storage and waste disposal, energy islands including some wave-power
configurations, flexible breakwaters, a supertanker in a seaway, or a pontoon-type hydroelastic VLFS (very large
floating structure) such as a floating airport or a mobile offshore base. Such projects are associated with immense
costs that are typically in the range US $5–$15B for design lives of 50–100 years. (Readers may already know
of a 6-year plan launched in 1995 to research and develop Megafloat, a floating airport in Yokosuka Bay, Japan,
which involved the construction of a 1,000 m by 60–121 m model that successfully passed takeoff and landing tests.
A detailed evaluation of the tests on the 1,000 m Megafloat and the 4,000 m-class test design, concluded that a
Megafloat airport with a scale of up to 4,000 m was more than feasible.)

The study herein has been a little more complicated and protracted than we first anticipated, as is explained in
the text in relation to [16–18]. For example, it is shown that the so-called matching method conceived in [16] and
used in [18] to describe surface waves incident upon a compliant floating raft such as a sea-ice floe in water of finite
depth and which requires infinite series to be truncated, unexpectedly produces inaccurate results.

The paper begins by formulating the problem to be solved in mathematical terms and introducing the three types
of plate equation that will be used; due to Forbes [25,26], von Kármán (see [27, Sect. 16.9] and [28, Sect. 8.5])
and Drozdov [29, pp. 191–196]. The solution method is then introduced, including both first- and second-order
formulations. The authors have also spent time validating their results by means of two classes of potential, a
Neumann-type (Appendix B.1) and a wave-type (Appendix B.2). Finally, to finish, some examples are given that
compare first- and second-order predictions, so that their relative importance can be established under different
ocean-wave forcing scenarios.

2 Formulation

We consider a long-crested travelling wave of amplitude a propagating at the surface of water of infinite depth and
density ρw, incident on a compliant floating raft of length L , density ρi and thickness h. We assume that the fluid
is incompressible and irrotational. A velocity potential � may then be defined that satisfies Laplace’s equation

�� = 0, (1)

where the operator � = ∇2 = ∂2/∂x2 + ∂2/∂z2 and the sea-floor condition

�z = 0, z → ∞. (2)

In two of the plate models considered for the floe [29, pp. 191–196] and [25,26] the sea surface is given everywhere
as z = −η(x, t), which satisfies the Bernoulli-pressure surface condition

− mg

ρw
+ gη +�t + 1

2

(
(�x )

2 + (�z)
2
)

+ p

ρw
= 0, z = −η, (3)

where m = ρi h is the mass per unit area, g is the acceleration due to gravity, and the kinematic surface condition

�xηx + ηt +�z = 0, z = −η, (4)

as derived in [30, p. 16]. For the von Kármán plate [27, Sect. 16.9], [28, Sect. 8.5], the surface is given as (x +u(x, t),
−η(x, t)) for x ∈ [0, L]. In this case the Bernoulli equation (3) looks exactly the same but is applied at (x +u,−η),
while the kinematic equation becomes

ηt + ηx

1 + ux
�x (x + u,−η(x, t))+�z(x + u,−η(x, t)) = 0. (5)
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The pressure term p(x, t) in the Bernoulli equation is derived from the plate equation for the force exerted
upon the surface. The approach used is ‘direct’ in the sense that a single set of equations for � will be solved,
as opposed to treating the hydrodynamics and material deformation separately. Denoting the flexural rigidity by
D = Eh3/12(1 − ν2), where E is Young’s modulus and ν is Poisson’s ratio, we consider three different nonlinear
models for the plate due to Forbes [25,26], von Kármán [27, Sect. 16.9], [28, Sect. 8.5] and Drozdov [29, pp. 191–
196]. In each case the model is an extension to the standard Kirchhoff (Euler–Bernoulli) plate formulation, which
incorporates different geometrically nonlinear terms. More general nonlinear models are possible, of course, but
these would introduce significantly more complicated algebra. (For example, one might reasonably allow the ends
of the plates to move laterally to assimilate the effect of floe drift.) The plate models used herein are described
mathematically in Sects. 2.1–2.3.

2.1 Forbes

p = Mxx + m(ηt t + g), 0 < x < L , (6)

where

M = 2Dηxx

(2 + η2
x )

3/2 − hηxx
.

Rather than using the linearized approximate version of curvature that appears in the Euler–Bernoulli plate equation,
this plate equation incorporates the Gaussian curvature in full. Axial forces are not included, however.

2.2 von Kármán

The basic assumption of the von Kármán plate is that, although the deflexion is no longer small in comparison with
the plate thickness, it still remains small in comparison with the plate’s lateral dimensions. As noted above, the
surface in this case is given as (x + u(x, t),−η(x, t)) and the pressure is given by

p = Mxx − Nηxx + m(ηt t + g), (7)

where

M = Dηxx ,

and

N = Eh

(1 − ν2)

(
ux + 1

2
η2

x

)
= Eh

2(1 − ν2)L

∫ L

0
η2

x dx,

is the resultant axial stress. This can be written in the latter form, which is independent of u(x, t), because ∂N/∂x = 0
and we have assumed u(0, t) = u(L , t) = 0.

2.3 Drozdov

In this model the vertical force on the plate is

p cosα = ∂

∂x
(Mx − Nηx )+ m(ηt t + g), (8)

where

M = 2Dηxx

2(1 + η2
x )

3/2 − hηxx
, N = Eh

(
(1 + η2

x )
1/2 − 1

)
,

andα(x, t) is the angle the curve z = −η(x, t)makes with the vertical. The Drozdov plate equation is a more general
version of the Forbes one in the sense that Gaussian curvature is used but, analogous to the von Kármán theory,
the formulation includes axial stresses N (although in this case ∂N/∂x �= 0) and the provision for the pressure to
always act normally to the deforming surface at the underside of the raft.
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2.4 Nondimensionalization

In each case the problem is nondimensionalized by multiplying all lengths by the travelling wave number σ0 = ω2/g
and times by the quantity

√
σ0g. Consequently, the potential, bending moment, resultant axial stress and pressure

are, respectively, scaled as follows:

� =
√
σ 3

0 /g�, M = σ 3
0 M/ρi g, N = σ0

ρi g
N , p = σ0

ρwg
p.

Henceforth, omitting the overbars, the nondimensional governing equations are given by

�� = 0, (9a)

�z = 0, z → ∞, (9b)

η +�t + (�2
x +�2

z )+ p − γ = 0, z = −η, (9c)

ηt +�z +�xηx = 0, z = −η, (9d)

for the Forbes and Drozdov plate models, where γ = σ0hρi/ρw. For the von Kármán plate the nondimensional
Bernoulli equation appears exactly the same as above but is evaluated at (x + u,−η), while the nondimensional
form of the kinematic condition (5) is also the same. Finally, we nondimensionalize the plate models (6)–(8), scaling
each by σ0/ρwg. So, in the case of the Forbes model, for example, we have

Mxx + γ ηt t + γ = p, 0 < x < L , (10)

where

M = βηxx

(1 + η2
x )

3/2 − hηxx/2
, β = Dσ 4

0

ρwg
.

We also apply free-edge conditions at each end of the plate, i.e.,

M = Mx = 0 at x ∈ {0+, L−}. (11)

3 Perturbation expansion

We use a Stokes expansion to investigate nonlinear effects. Recalling that a is the incident wave amplitude, we
expand the potential, displacement and pressure as

�(x, z, t) = ε�(1)(x, z, t)+ ε2�(2)(x, z, t)+ · · · (12a)

η(x, t) = εη(1)(x, t)+ ε2η(2)(x, t)+ · · · (12b)

p(x, t) = p(0)(x, t)+ εp(1)(x, t)+ ε2 p(2)(x, t)+ · · · (12c)

where ε = aσ0 is a small parameter and, for the von Kármán plate, we expand the horizontal displacement

u(x, t) = ε2u(2)(x, t)+ ε3u(3)(x, t)+ · · · . (13)

We then use a Taylor series to expand the potential on the surface (and its derivatives) about the mean surface z = 0

�(x, η, t) = �(x, 0, t)− η�z(x, 0, t)+ η2

2
�zz(x, 0, t)+ · · ·

= ε�(1)(x, 0, t)+ ε2
(
�(2)(x, 0, t)−�(1)z (x, 0, t)η(1)(x, t)

)
+ · · · (14)

Substituting �(x, η, t) and η(x, t) in the Bernoulli surface pressure condition and separating orders of ε gives the
system of equations

p(1) +�
(1)
t + η(1) = 0, (15a)

1

2

(
(�(1)x )2 + (�(1)z )2

)
−�

(1)
zt η

(1) + p(2) +�
(2)
t + η(2) = 0, (15b)

...
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Similarly, substituting �(x, η, t) and η(x, t) in the kinematic surface condition gives

η
(1)
t +�(1)z = 0, (16a)

�(1)x η(1)x −�(1)zz η
(1) + η

(2)
t +�(2)z = 0, (16b)

...

Observe that the second-order Bernoulli and kinematic equations are exactly the same for each of the plate models.
Substituting η(x, t) in the plate equation gives the system

βη(1)xxxx + γ η
(1)
t t = p(1), (17a)

βη(2)xxxx + γ η
(2)
t t + βh(η(1)xx

2
)xx/2 = p(2), (17b)

...

Finally, the edge conditions give

η(1)xx = η(1)xxx = 0, x = 0, L , (18a)

η(2)xx = η(2)xxx = 0, x = 0, L , (18b)
...

4 First order solution

We begin by assuming that the first-order velocity potential can be written as�(1)(x, z, t) = φ(1)(x, z)eit . The first-
order solution to the problem arises from solving the first-order parts of the perturbation expansion for φ(1)(x, z),
i.e.,

�φ(1) = 0, z > 0, (19a)

φ(1)z + φ(1) = 0, z = 0, x < 0 or x > L , (19b)

βφ(1)zxxxx + (1 − γ )φ(1)z + φ(1) = 0, z = 0, 0 < x < L , (19c)

φ(1)zxx = φ(1)zxxx = 0, z = 0, x = 0 or x = L , (19d)

φ(1) → e−ix + R(1)eix , x → −∞, (19e)

φ(1) → T (1)e−ix , x → ∞. (19f)

where R(1) and T (1) are the first-order reflection and transmission coefficients, respectively. Sinceφ(1)(x, z) satisfies
Laplace’s equation in the half-plane z > 0, we may invoke Green’s theorem in the plane

φ(1)(x, z) =
∫

�

φ(1)G(1)
n − φ(1)n G(1)ds, (20)

where � is a contour including (x, z) extending from ξ = −∞ to ∞ and from ζ = 0 to ∞, as in Fig. 1, and
G(1)(ξ, ζ ; x, z) is the well-known first-order open-water infinite-depth Green’s function given by

G(1)(ξ, ζ ; x, z) = − 1

2π

∫ ∞

−∞
e−|k|(z+ζ )+ik(ξ−x)

|k| − 1
dk + 1

4π
log

(
(x − ξ)2 + (z − ζ )2

)

− 1

4π
log

(
(x − ξ)2 + (z + ζ )2

)
. (21)

Using the asymptotic expressions for φ(1) and G(1) and the boundary conditions, we may write integral equation
(20) on the surface z = 0 as

φ(1)(x, 0) = e−ix +
∫ L

0
G̃(ξ, x)ψ(ξ)dξ, (22a)

ψ(ξ) = φ(1)(ξ, 0)+ φ
(1)
ζ (ξ, 0), (22b)

where G̃(ξ, x) = G(1)(ξ, 0; x, 0)+ i cos(ξ − x).
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ξ

ζ

L

L

Fig. 1 The contour of integration used in the application of Green’s theorem (20). The hatched area represents the compliant raft

Next we use a second (dry) Green’s function for the plate alone to write φ(1)z in terms of φ(1) under the raft, i.e.,

φ(1)z (x, 0) = − 1

β

∫ L

0
ḡ(1)(ξ, x)φ(1)(ξ, 0)dξ, 0 ≤ x ≤ L . (23)

where ḡ(1)(ξ, x) is the dry Green’s function for the plate, satisfying

d4ḡ(1)(ξ, x)

dξ4 − µ4
1g(1)(ξ, x) = δ(ξ − x), (24)

where µ1 = 4
√
(γ − 1)/β and the free-edge boundary conditions

ḡ(1)ξξ (0, x) = ḡ(1)ξξ (L , x) = ḡ(1)ξξξ (0, x) = ḡ(1)ξξξ (L , x) = 0. (25)

The Green’s function ḡ(1)(ξ, x) is given piecewise as
1

β
ḡ(1)(ξ, x) =

{
A1eiµ1ξ + B1e−iµ1ξ + C1eµ1ξ + D1e−µ1ξ , 0 < ξ < x < L ,
A2eiµ1ξ + B2e−iµ1ξ + C2eµ1ξ + D2e−µ1ξ , 0 < x < ξ < L ,

(26)

where⎛
⎜⎜⎝

A1

B1

C1

D1

⎞
⎟⎟⎠ = − 1

2βµ3
1

⎛
⎜⎜⎝

−1 −1 1 1
−i i 1 −1

−eiµ1 L −e−iµ1 L eµ1 L e−µ1 L

−ieiµ1 L ie−iµ1 L eµ1 L −e−µ1 L

⎞
⎟⎟⎠

−1

×

⎛
⎜⎜⎝

0
0

sinµ1(L − x)+ sinhµ1(L − x)
cosµ1(L − x)+ coshµ1(L − x)

⎞
⎟⎟⎠ ,

and⎛
⎜⎜⎝

A2

B2

C2

D2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

A1

B1

C1

D1

⎞
⎟⎟⎠ + 1

4βµ3
1

⎛
⎜⎜⎝

ie−iµ1x

−ieiµ1x

e−µ1x

eµ1x

⎞
⎟⎟⎠ .

Finally, Eq. (23) is substituted back in the integral equation (22) to get

φ(1)(x, 0) = e−ix +
∫ L

0
G̃(ξ, x)×

(
φ(1)(ξ, 0)− 1

β

∫ L

0
ḡ(1)(ξ, λ)φ(1)(λ, 0)dλ

)
dξ. (27)

Equation (27) is solved discretely for φ(1) under the floe. We use a constant-element BEM to do this, dividing the
interval [0, L] into N evenly spaced subintervals and assuming that φ(1)(x, 0) is constant on each one, i.e.,

φ(1)(x, 0) = φ
(1)
j , s j−1 < x < s j , j = 1, . . . , N . (28)

Under this assumption (27) becomes a linear system of N unknowns φ(1)j that is easily solved. Discrete values for

the normal derivative φ(1)z (x, 0) under the floe can then be found by discretizing (23), i.e.,

φ(1)z (x, 0) = φ(1)z j
, s j−1 < x < s j , j = 1, . . . , N . (29)

Once we have these, we can apply (22) again to get a smoother representation of φ(1)(x, 0), both inside and outside
of the floe, i.e.,

φ(1)(x, 0) = e−ix +
N∑

j=1

ψ j

∫ s j

s j−1

G̃dξ, ψ j = φ
(1)
j + φ(1)z j

. (30a,b)
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5 Second-order solution

We begin by assuming that the second-order velocity potential can be written as �(2)(x, z, t) = φ(2)(x, z)e2it . We
then derive equations for φ(2) from the second-order equations in the perturbation expansion, i.e.,

�φ(2) = 0, z > 0, (31a)

φ(2)z + 4φ(2) = 2iA − B, z = 0, x < 0, x > L , (31b)

β(φ(2)z + B)xxxx + (1 − 4γ )(φ(2)z + B)+ 4φ(2) = 2i(A + C), z = 0, 0 < x < L , (31c)

(φ(2)z + B)xx = (φ(2)z + B)xxx = 0, z = 0, x = 0 or x = L , (31d)

φ(2)(x, 0) → 2iR(1) + R(2)e4ix , as x → −∞, (31e)

φ(2)(x, 0) → T (2)e−4ix , as x → ∞, (31f)

where

A(x) = (φ
(1)
x )2 + (φ

(1)
z )2

2
− iη(1)φ(1)z , B(x) = η(1)x φ(1)x − η(1)φ(1)zz ,

and

C(x) = 0 (von Kármán),

or C(x) = βh

2

[
η(1)x

]2

xx
(Forbes),

or C(x) = βh

2

[
η(1)x

]2

xx
+ γ

[
η(1)x

]2
(Drozdov).

The first thing to notice about the second-order equations is that the equation under the floe is just a plate equation
for φ(2)z + B. Accordingly, we can write

φ(2)z + B = 1

β

∫ L

0
ḡ(2)(x, ξ)

(
−4φ(2)(ξ, 0)+ 2i (A(ξ)+ C(ξ))

)
dξ. (32)

where ḡ(2)(x, ξ) is the second-order dry Green’s function for the plate satisfying equations similar to (24)–(25),
but with µ2 = 4

√
(4γ − 1)/β in place of µ1. In order to apply the boundary-integral method we make several

modifications to φ(2). Specifically, we consider instead

ϕ(2) = φ(2) − iR(1) + q. (33)

5.1 Using the Neumann-type singular potential

The Neumann-type singular solution (73) may now be employed in (33) to construct the system

�ϕ(2) = 0, z > 0, (34a)

ϕ(2)z + 4ϕ(2) = −K2 − 4iR(1) + 4q, z = 0, x < 0, x > L , (34b)

ϕ(2)z = −K2 − 2iA + 1

β

∫ L

0
ḡ(2)(x, ξ)

(
−4ϕ(2)(ξ, 0)− 4iR(1)

+ 4q(ξ, 0)+ 2i (A(ξ)+ C(ξ))

)
dξ, z = 0, 0 < x < L , (34c)

ϕ(2)(x, z) → iR(1) + R(2)e4ix−4z, x → −∞, (34d)

ϕ(2)(x, z) → −iR(1) + T (2)e−4ix−4z, x → ∞. (34e)
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Applying Green’s theorem to ϕ(2) as in Fig. 1, we derive the integral equation

ϕ(2)(x, z) = R(2)

2
e4ix−4z + T (2)

2
e−4ix−4z −

∫ 0

−∞
G(2)(K2(ξ)+ 4iR(1) − 4q(ξ, 0))dξ

−
∫ ∞

L
G(2)(K2(ξ)+ 4iR(1) − 4q(ξ, 0))dξ +

∫ L

0
G(2)

(
4ϕ(2)(ξ, 0)− K2(ξ)− 2iA(ξ)

+ 1

β

∫ L

0
ḡ(2)(ξ, λ)

(
−4ϕ(2)(λ, 0)− 4iR(1) + 4q(λ, 0)+ 2i (A(λ)+ C(λ))

)
dλ

)
dξ, (35)

where G(2)(ξ, ζ ; x, z) is the second-order open-water Green’s function satisfying

�G(2) = δ(ξ − x, ζ − z)

G(2)
ζ + 4G(2) = 0, ζ = 0

G(2)
ζ → 0, ζ → ∞.

Then, by invoking the symmetry of G(2) and applying the asymptotic conditions on ϕ as x → ±∞ to provide
expressions for R(2) and T (2), we may rewrite (35) and use (33) to obtain the following expression for φ(2)

φ(2)(x, z) = iR(1) − q(x, z)+ 2R(1)e−4z sin 4x −
∫ ∞

−∞
G̃(2)

(
K2(ξ)+ 4iR(1) − 4iR(1)sgn(ξ)

)
dξ

+ 4
∫ ∞

−∞
G̃(2)q(ξ, 0)dξ − 8iR(1)

∫ x

0
G(2)dξ +

∫ L

0
G̃(2)

(
4φ(2)(ξ, 0)− 2iA(ξ)

+ 1

β

∫ L

0
ḡ(2)(ξ, λ)

(
−4φ(2)(λ, 0)+ 2i (A(λ)+ C(λ))

)
dλ

)
dξ, (36)

where G̃(2) = G(2)(ξ, 0; x, z)+ ie−4z cos 4(ξ − x). Equation (36) can be solved numerically for φ(2)(x, 0) within
0 < x < L , which then allows us to evaluate φ(2)(x, z) anywhere in the domain from the same equation.

5.2 Using the wave-type singular potential

If instead of Appendix B.1 we use the singular wave-type potential from Appendix B.2 then, combining the equations
for φ(2) and q, we obtain the system

�ϕ(2) = 0, z > 0, (37a)

ϕ(2)z + 4ϕ(2) = −K2 − 4iR(1), z = 0, x < 0, x > L , (37b)

ϕ(2)z = −K2 − 2iA − 4q + 1

β

∫ L

0
ḡ(2)(x, ξ)

×
(
−4ϕ(2)(ξ, 0)− 4iR(1) + 4q(ξ, 0)+ 2i (A(ξ)+ C(ξ))

)
dξ, z = 0, 0 < x < L , (37c)

ϕ(2)(x, z) → iR(1) +
((

R(2) − α1

2

)
e4ix − α2

2
e−4ix

)
e−4z, x → −∞, (37d)

ϕ(2)(x, z) → −iR(1) +
(α1

2
e4ix +

(
T (2) + α2

2

)
e−4ix

)
e−4z, x → ∞, (37e)

and, as for Sect. 5.1,

ϕ(2)(x, z) = R(2)

2
e4ix−4z + T (2)

2
e−4ix−4z −

∫ 0

−∞
G(2)

(
K2(ξ)+ 4iR(1)

)
dξ

−
∫ ∞

L
G(2)(K2(ξ)+ 4iR(1))dξ +

∫ L

0
G(2)

(
4ϕ(2)(ξ, 0)− K2(ξ)− 2iA(ξ)− 4q(ξ, 0)

+ 1

β

∫ L

0
ḡ(2)(ξ, λ)

(
−4ϕ(2)(λ, 0)− 4iR(1) + 4q(λ, 0)+ 2i (A(λ)+ C(λ))

)
dλ

)
dξ. (38)
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Fig. 2 Second-order potential φ(2)(x, 0) calculated using a Neumann-type (left plot) singular potential and a wave-type singular
potential (right plot) for a 50 m by 1 m compliant raft in 1 m amplitude waves of period 5 s

We may then apply the asymptotic conditions to get formulae for R(2) and T (2) to obtain

φ(2)(x, z) = iR(1) − q(x, z)+
(

2R(1) sin 4x + α1

2
e4ix − α2

2
e−4ix

)
e−4z

−
∫ ∞

−∞
G̃(2)

(
K2(ξ)+ 4iR(1) − 4iR(1)sgn(ξ)

)
dξ − 8iR(1)

∫ x

0
G(2)dξ

+
∫ L

0
G̃(2)

(
4φ(2)(ξ, 0)− 2iA(ξ)+ 1

β

∫ L

0
ḡ(2)(ξ, λ)

(
−4φ(2)(λ, 0)+ 2i (A(λ)+ C(λ))

)
dλ

)
dξ.

(39)

where α1 and α2 are given in (79) and (80), respectively. Recall that one can easily recover the surface conditions
from either (36) or (39) using

G(2)
z (ξ, 0; x, 0)+ 4G(2)(ξ, 0; x, 0) = δ(ξ − x). (40)

Also note that the integral equations for φ(2) in (36) and (39) are actually identical since

qw − qn + 4
∫ ∞

−∞
G̃(2)qn(ξ, 0)dξ = α1

2
e4ix−4z − α2

2
e−4ix−4z, (41)

where qn and qw denote the Neumann-type and wave-type singular potentials, respectively. The second-order
potentials arising from the two different approaches are shown in Fig. 2, where it can be seen that the two methods
produce identical results.

6 Wave-type singular potential in finite depth

Here we investigate the applicability of the matching method to problems similar to those above but in water of
finite depth. To simplify the discussion we focus on a wave-type potential problem in finite water depth similar to
that in Sect. 6.2. We solve this problem by two methods, viz. residues and matching, and find that the matching
method fails due to its inability to account for the singular behaviour at the origin properly.

Consider the equations for the wave-type singular potential in water of (nondimensional) depth H , i.e.,

�q = 0, z > 0, (42a)

qz + 4ω2q = f (x), z = 0, (42b)

qz = 0, z = H, (42c)
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where ω is the nondimensional frequency. In common with our earlier discussion, we choose f (x) = exU (−x)/x
and use the same nondimensionalization as [16]. Taking the Fourier transform, we may derive the solution

q(x, z) = − 1

2π

∫ ∞

−∞
f̂ (k)

k tanh k H − 4ω2 χ(k, z) e−ikx dk, (43)

where χ(k, z) = cosh k(z − H)/ cosh k H . Next, note how the Green’s function for open water of infinite depth is
approximated by the series expression for the Green’s function using an expression derived in [31]. From the series
representation of the Green’s function for open water of depth H

G(x, 0; ξ, 0) = sin |ξ − x | − 1

π
g(|ξ − x |) ≈ A0 sin |ξ − x | −

∞∑
n=1

Ane−iσn |ξ−x |, (44)

where A0 = 1
ω2+H(1−ω4)

, An = iσn
ω2+H(σ 2

n −ω4)
and the quantities σn are the (nondimensional) roots of the dispersion

equation σ tanh σH = ω2 on the negative imaginary axis. By differentiating this series approximation for g(x), we
can derive a series approximation for f (x), i.e.,

f (x) ≈
⎧⎨
⎩

∞∑
n=1

Bneβn x , x < 0, where Bn = π

(
1 − σ 2

n

iσn

)
An, βn = 1 + iσn,

0, x > 0.
(45)

Taking the Fourier transform of (45), we get a series approximation for f̂ (k), as follows:

f̂ (k) ≈
∞∑

n=1

Bn

βn + ik
. (46)

Substitution in (43) then gives a series approximation for q(x, z)

q(x, z) ≈
∞∑

n=1

Bn

2π i

∫ ∞

−∞
fn(k, x, z)dk, (47)

where fn(k, x, z) = −iχ(k,z)e−ikx

(βn+ik)(k tanh k H−4ω2)
.

By shifting the poles of (k tanh k H −4ω2) slightly off the real axis and evaluating the integrals around a contour
in the upper half-plane for x > 0 and in the lower half-plane for x < 0, we can then use the residue theorem to
obtain

q(x, z) ≈ Re

⎧⎪⎪⎨
⎪⎪⎩

∞∑
n=1

Bn

{
Res[ fn, iβn] + Resε→0[ fn, σ

(2)
0 + iε] +

∞∑
m=1

Res[ fn,−σ (2)m ]
}
, x < 0,

−
∞∑

n=1
Bn

{
Resε→0[ fn,−σ (2)0 − iε] +

∞∑
m=1

Res[ fn, σ
(2)
m ]

}
, x > 0.

(48)

Note we have taken the real part to eliminate the imaginary asymptotic terms that arise from the residues
Resε→0[ fn,−σ (2)0 − iε] and Resε→0[ fn, σ

(2)
0 + iε] in a similar manner to those in the finite depth Green’s function.

Thus we get
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q(x, z) ≈ Re

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
n=1

Bn

⎧⎨
⎩

−χ(iβn, z)eβn x
(
iβn tanh(iβn H)− 4ω2

) + iσ (2)0 χ(−σ (2)0 , z)eiσ (2)0 x

(βn − iσ (2)0 )(4ω2 + H
(
(σ
(2)
0 )2 − 16ω4)

)

−
∞∑

m=1

iχ(σ (2)m , z)e−iσ (2)m x

(βn + iσ (2)m )
(

4ω2 + H
(
(σ
(2)
m )2 − 16ω4

))
⎫⎬
⎭ , x < 0,

−
∞∑

n=1
Bn

⎧⎨
⎩

iσ (2)0 χ(−σ (2)0 , z)eiσ (2)0 x

(βn − iσ (2)0 )
(

4ω2 + H
(
(σ
(2)
0 )2 − 16ω4

))

−
∞∑

m=1

iσ (2)m χ(σ
(2)
m , z)e−iσ (2)m x

(βn + iσ (2)m )
(

4ω2 + H
(
(σ
(2)
m )2 − 16ω4

))
⎫⎬
⎭ , x > 0,

(49)

which is shown in Fig. 3.
To give us confidence, we may reconcile the asymptotic behaviour of this approximation with that of the corre-

sponding infinite depth wave-type singular potential in (78), i.e.,

lim
x→±∞ q(x, z) = ∓Re

{(
f̂1(σ

(2)
0 )+ i f̂2(σ

(2)
0 )

)
e±iσ (2)0 x

}
× σ

(2)
0 χ(σ

(2)
0 , z)

4ω2 + H
(
(σ
(2)
0 )2 − 16ω4

)

→ ∓
(

f̂1(4) cos 4x − f̂2(4) sin 4x
)

e−4z, as H → ∞, (50)

i.e., this is consistent with the asymptotic limit of the infinite depth wave-type singular potential given in (78).
Finally, it is relevant to consider whether the finite-depth wave-type singular potential calculated above using

residues could also be found using the so called matching method (see, e.g. [18]). We propose the solution

q(x, z) = q̌(x, z)+ q̂(x, z), (51)

where q̌(x, z), the homogeneous part of the solution, is given by

q̌(x, z) =

⎧⎪⎪⎨
⎪⎪⎩

−b̌0e−iσ (2)0 xχ(σ
(2)
0 , z)+

∞∑
n=0

ǎneiσ (2)n xχ(σ
(2)
n , z), x < 0,

−ǎ0eiσ (2)0 xχ(σ
(2)
0 , z)+

∞∑
n=0

b̌ne−iσ (2)n xχ(σ
(2)
n , z), x > 0,

(52)

and

q̂(x, z) =

⎧⎪⎨
⎪⎩

∞∑
n=1

âneβn xχ(iβn, z), ân = −Bn

iβn tanh(iβn H)− 4ω2 , x < 0,

0, x > 0.

(53)

Then we should be able to use the continuity conditions

q(0−, z) = q(0+, z), qx (0
−, z) = qx (0

+, z), (54a,b)

to get the equations
∫ H

0

(
q̌(0−, z)− q̌(0+, z)

)
χ(σ (2)m , z)dz = −

∫ H

0
q̂(0−, z)χ(σ (2)m , z)dz, m = 0, 1, 2, . . . (55a)

∫ H

0

(
q̌x (0

−, z)− q̌x (0
+, z)

)
χ(σ (2)m , z)dz = −

∫ H

0
q̂x (0

−, z)χ(σ (2)m , z)dz, m = 0, 1, 2, . . . (55b)

These equations can actually be solved separately for each pair of unknown coefficients ǎm, b̌m . We can obviously
use the equations to approximate the solution by truncating the series on the LHS at n = N2 and on the RHS at
n = N1. In Fig. 4 we use this method to approximate q(x, 0) with H = 200 m.
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Fig. 3 The residue solution for q(x, 0) in depth H = 200 m,
cf. Fig. 8
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Fig. 4 The matching solution for q(x, 0) in depth H = 200 m,
with N1 = N2 = 100

Table 1 Convergence of
matching solution, for
H = 200 m

N1 − ∫ H
0 q̂(0−, z)χ(σ (2)0 , z)dz − ∫ H

0 q̂x (0−, z)χ(σ (2)0 , z)dz

100 0.2428 1.0275

500 0.3114 2.4954

1,000 0.3213 3.1756

2,000 0.3264 3.8628

It is evident, however, that this approximation disagrees markedly from the solution plotted in Fig. 3 (and in
Fig. 8 for infinite depth). Moreover, this solution is highly unstable as one varies N1 and N2 and it appears that the
matching approximation is at fault. We can unearth the principal source of this error by considering the equations
for ǎ0, b̌0 (m = 0), which determine the asymptotic behaviour of the solution. From the residue solution derived
earlier we can actually see what the RHS of the equation should approximate, i.e.,

2(ǎ0 − b̌0)K0 = −
∞∑

n=1

ân

∫ H

0
χ(iβn, z)χ(σ (2)0 , z)dz ≈ arctan σ (2)0

σ
(2)
0

, (56a)

2iσ (2)0 (ǎ0 + b̌0)K0 = −
∞∑

n=1

βnân

∫ H

0
χ(iβn, z)χ(σ (2)0 , z)dz ≈ −1

2
log[1 + (σ

(2)
0 )2], (56b)

where K0 = ∫ H
0 χ(σ

(2)
0 , z)2dz. The asymptotic behaviour of the solutions plotted in Figs. 3, 4 differ because the

matching approximations are poor, even when N1 is very large, as indicated in the Table 1. While the first column
in the table (slowly) converges to arctan σ (2)0 /σ

(2)
0 = 0.3315, as it should according to (56a), the second column is

obviously not converging to the RHS of (56b), i.e., to − log[1 + (σ
(2)
0 )2]/2 = −1.4166.

7 Results and conclusions

The principal goal of this paper has been to present a second-order theory that describes how a flexible (hydro-
elastic) raft is affected by a large-amplitude ocean-wave train. To allow for some generality, the raft has been
represented mathematically using three different nonlinear mechanical models, due to Forbes [25,26], von Kármán
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[27, Sect. 16.9], [28, Sect. 8.5] and Drozdov [29, pp. 191–196]. In doing this we have also shown that the second-
order eigenfunction matching theory of [16], which was originally constructed to model a semi-infinite flexible
sea-ice cover subjected to waves, produces unacceptably inaccurate results when it is applied to a finite raft in water
of finite depth.

To conclude, we present some results using, by way of example, physical material parameters that are typical
of sea-ice, namely, E = 5 GPa, ν = 0.3, ρi = 922.5 kg m−3, ρw = 1,025 kg m−3. The purpose of these plots is
not intended to be geophysical; rather the curves are plotted to allow the magnitude of the first- and second-order
solutions to be directly compared to determine when a linear theory will suffice and when it is necessary to use a
higher-order theory. Similar calculations can be done for a pontoon-type hydroelastic VLFS or a flexible breakwater,
although by chance it turns out that in practice sea-ice physical constants are quite close to those for other floating
bodies of this type. The von Kármán plate [27, Sect. 16.9], [28, Sect. 8.5] is used again here but recall the other two
models actually produce very similar results.

Figures 5–7 show these comparisons for a 50 m ice floe in waves of (normalized) amplitude a = 1 m at 5 s,
10 s and 20 s period, respectively. Evidently the wave period and the wave amplitude are pivotal in determining the
importance of higher-order effects: essentially the smaller the period or the larger the amplitude the greater is the
relative importance of the second-order terms in comparison with the first-order ones. This, of course, is not an
unexpected result but reassuringly the study has confirmed and quantified our intuition for the specific case of a
floating hydroelastic raft. By way of example, the second-order contribution in (12b) for a 5-s-period, 1-m-ampli-
tude wave is more than 50% of the magnitude of the first-order term, while at 10 s the ratio has dropped to less than
10% and at 20 s it is only a few percent.

Recalling our comments about global warming at the beginning of the paper and the associated proliferation of
intense storms with their simultaneous severe waves, it is important to remind the reader that the ratio of second-
order to first-order effects is proportional to wave amplitude (12b). Accordingly, putting aside any change to the
spectral composition of the oceans and marginal seas in the future, as it is difficult to anticipate what will actually
occur, it still remains highly probable that nonlinear effects will become far more prevalent. Storms of much greater
destructive power will drive their waves further into ice fields, causing major challenges for existing and proposed oil
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Fig. 5 Absolute values of vertical displacements ε|η(1)| and
ε2|η(2)|, where ε = aω2/g, when a = 1 m, T = 5 s and
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Fig. 6 As Fig. 5 but for T = 10 s
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Fig. 7 As Fig. 5 but for T = 20 s
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Fig. 8 Approximation of q1(x, 0) plotted against the nondi-
mensional coordinate x for water of infinite depth

and gas installations, and in ice-free regions offshore structures and seagoing vessels will be subjected to amplified
wave-induced flexure and potential damage.
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Appendix A: Singular expansion

In the following it is important to be able to compute the first and second derivatives of φ(1)(x, 0) accurately.
However, one cannot simply differentiate (30a) with respect to x since G̃x has a 1/x type singularity at ξ = x , so
our formula for φ(1)x would have logarithmic-type singularities at each node. To sidestep this problem and to assist
in the integration of these functions in Sect. 5 we extract their singular components, i.e.,

φ(1)x = φ̂(1)x + a1 log |x | + a2 log |L − x |, (57)

where a1 = ψ(0+)/π, a2 = ψ(L−)/π and the nonsingular part φ̂(1)x is given by

φ̂(1)x =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ie−ix − (a1 + a2) log |L − x | +
∫ L

0

[
G̃ − 1

π
log |ξ − x |

]

x
ψ(ξ)dξ

− 1

π

∫ L

0

ψ(0+)− ψ(ξ)

x − ξ
dξ, x < 0,

− ie−ix − 1

π

(
ψ(0+)− ψ(x)

)
log |x | + 1

π

(
ψ(L−)− ψ(x)

)
log |L − x |

+
∫ L

0

[
G̃ − 1

π
log |ξ − x |

]

x
ψ(ξ)dξ − 1

π

∫ L

0

ψ(x)− ψ(ξ)

x − ξ
dξ, 0<x<L ,

− ie−ix − (a1 + a2) log |x | +
∫ L

0

[
G̃ − 1

π
log |ξ − x |

]

x
ψ(ξ)dξ

− 1

π

∫ L

0

ψ(L−)− ψ(ξ)

x − ξ
dξ, x > L .

(58)
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Using this expression, we may then expand the second derivative as

φ(1)xx = φ̂(1)xx + b1 log |x | + b2 log2 |x | + b3

x
+ b4 log |L − x | + b5 log2 |L − x | + b6

x − L
, (59)

where the constants b1, . . . , b6 are given by

b1 = (h(0)+ a2 log L) /π, b2 = a1/2π, b3 = a1,

b4 = − (h(L)+ a1 log L) /π, b5 = −a2/2π, b6 = a2,

and h(x) = φ̂
(1)
x + φ

(1)
nx (x, 0), 0 ≤ x ≤ L .

The nonsingular part φ̂(1)xx is given by

φ̂(1)xx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− e−ix + (h(L)− h(0)) log |L − x |/π + a1

π

(
π2/6 + log2(L)/2 + Li2(x/L)

)

+ a2

π

(
π2/3 − Re[Li2(1 − x/L)] − log2(L)/2

)
+
∫ L

0

[
G̃ − 1

π
log |ξ − x |

]

xx
ψ(ξ)dξ

− 1

π

∫ L

0

h(0)− h(ξ)

x − ξ
dξ, x < 0,

− e−ix + ψ(x)− (h(0)− h(x)) log |x |/π + (h(L)− h(x)) log |L − x |/π

− a1

π

(
π2/3 − log2(L)/2 − Li2(x/L)

)
+ a2

π

(
π2/3 − log2(L)/2 − Li2(1 − x/L)

)

−
∫ L

0
G̃(ξ, x)ψ(ξ)dξ − 1

π

∫ L

0

h(x)− h(ξ)

x − ξ
dξ, 0<x<L ,

− e−ix + (h(L)− h(0)) log |x |/π − a2

π

(
π2/6 + log2(L)/2 + Li2(1 − x/L)

)

− a1

π

(
π2/3 − Re[Li2(x/L)] − log2(L)/2

)
+
∫ L

0

[
G̃ − 1

π
log |ξ − x |

]

xx
ψ(ξ)dξ

− 1

π

∫ L

0

h(L)− h(ξ)

x − ξ
dξ, x > L ,

(60)

where Li2 is the dilogarithm (defined in [32, Sect. 27.7] or, equivalently, in [33, p. 435]).
These expansions of φ(1)x and φ(1)xx then allow us to expand a function that is important in the second-order analysis

similarly, namely

K (x) = B(x)− 2iA(x) =
(
η(1)x φ(1)x − η(1)φ(1)zz

)
− i

(
(φ(1)x )2 + (φ(1)z )2 − 2iη(1)φ(1)z

)
, (61)

evaluated on the surface. This simplifies to

K (x) =
{

iφ(1)x φ
(1)
zx + iφ(1)z φ

(1)
xx − i(φ(1)x )2 − 3i(φ(1)z )2, 0 < x < L ,

−2i(φ(1)x )2 − iφ(1)φ(1)xx − 3i(φ(1))2, otherwise.
(62)

An important property of this function can be established by substituting the asymptotic limits of φ(1) and its deriv-
atives in the second of these two formulae, namely K (x) → −8iR(1) as x → − ∞ and K (x)→ 0 as x → +∞.

The expansions of φ(1)x and φ(1)xx above allow us to expand K (x) in a similar way, i.e., K (x) = K1(x)+ K2(x),
where K2 shares the asymptotic properties of K and has integrable log and log2 singularities at 0 and L , while the
non-integrable part is of the form

K1(x) = c1
exU (−x)

x
+ c2

e−xU (x)

−x
+ c3

ex−LU (L − x)

x − L
+ c4

eL−xU (x − L)

L − x
, (63)

where c1 = −ia1φ
(1)(0, 0), c2 = −ia1φ

(1)
z (0+, 0), c3 = ia2φ

(1)
z (L−, 0), c4 = ia2φ

(1)(L , 0) and U (x) is the unit
step (Heaviside) function. The reason for this decomposition will become clear in the second-order solution.
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Appendix B: Singular potentials

B.1 Neumann-type singular potential

Here we wish to find the solution q(x, z) of the Neumann problem

�q = 0, z > 0, (64a)

qz(x, 0) = f (x), z = 0, (64b)

qz → 0, z → ∞, (64c)

This problem is solved by means of Fourier transforms, i.e.,

q(x, z) = − 1

2π

∫ ∞

−∞
f̂ (k)

|k| e−ikx−|k|zdk. (65)

We denote this integral for f (x) = exU (−x)/x , where U (x) is the unit step (Heaviside) function, by q1(x, z) and
note that for z = 0 this is given by q1(x, 0) = −F−1( f̂ (k)/|k|).

The Fourier transform of f (x) = exU (−x)/x is given by

f̂ (k) = i f̂1(k)+ f̂2(k) = i arctan(k)+ 1

2
log(1 + k2). (66)

To find q1(x, 0) we first consider the first part, namely

F−1
{

arctan(k)

|k|
}

= F−1
{

arctan(k)

|k| − sgn(k)e−|k| − πk

2(k2 + 1)

}
− ix

π(x2 + 1)
− iπ

4
sgn(x)e−|x |, (67)

where the inverse transform on the RHS of this expression is approximated using FFT. The other part of q1(x, 0)
requires the inverse transform

F−1
{

log(1 + k2)

2|k|
}

= F−1
{

log(1 + k2)

2|k| − |k| log |k|
1 + k2

}
+ F−1

{ |k| log |k|
1 + k2

}
, (68)

partitioned such that the first term on the RHS can again be approximated by FFT, while the second part is expressed
as the convolution

F−1
{ |k| log |k|

1 + k2

}
= F−1 {sgn(k) log |k|} ∗ F−1

{
k

k2 + 1

}
= 1

2π
p.v.

∫ ∞

−∞
γ + log |x − ξ |

x − ξ
sgn(ξ)e−|ξ |dξ. (69)

This may be simplified using integration by parts, as follows:

p.v.
∫ ∞

−∞
γ + log |x − ξ |

x − ξ
sgn(ξ)e−|ξ |dξ = log2 |x | + 2γ log |x | − 1

2

∫ ∞

−∞

(
log2 |x − ξ | + 2γ log |x−ξ |

)
e−|ξ |dξ,

(70)

and the remaining integrals can be written in terms of special functions, i.e.,
∫ ∞

−∞
log2 |x − ξ | e−|ξ |dξ = e−|x |

(
γ 2 + π2

6
+ 2|x |3F3(1, 1, 1; 2, 2, 2; |x |)

+ log |x |
[
2γ − 2E1(|x |)(1 + e|x |) log |x |

])

+e|x |
(
γ 2 + π2

6
− 2|x |3F3(1, 1, 1; 2, 2, 2;−|x |)

+ log |x |
[
2γ + 2E1(|x |)+ (1 + e−|x |) log |x |

])
, (71)

and∫ ∞

−∞
log |x − ξ | e−|ξ |dξ = 2 log |x | + e|x |E1(|x |)− e−|x |E1(|x |), (72)
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where E1(·) denotes the exponential integral, in this case for positive real argument, and 3F3(·) is a generalized
hypergeometric function [33, pp. 724–725] (see also [32, Chapt. 15]).

Thus, collecting the details of (67)–(72), we have

q1(x, 0) = −iF−1
{

arctan(k)

|k| − sgn(k)e−|k| − πk

2(k2 + 1)

}
− F−1

{
log(1 + k2)

2|k| − |k| log |k|
1 + k2

}
− x

π(x2 + 1)

−π
4

sgn(x)e−|x | − 1

2π
log2 |x | − γ

π
log |x | + e−|x |

(
γ 2 + π2

6
+ 2|x |3F3(1, 1, 1; 2, 2, 2; |x |)

+ log |x |
4π

[
2γ − 2E1(|x |)+ (1 + e|x |) log |x |

])
+ e|x |

4π

(
γ 2 + π2

6
− 2|x |3F3(1, 1, 1; 2, 2, 2;−|x |)

+ log |x |
[
2γ + 2E1(|x |)+ (1 + e−|x |) log |x |

])
+ γ

2π

(
2 log |x |+e|x |E1(|x |)−e−|x |E1(|x |)

)
. (73)

Finally we consider the integral (65) for f (x) = K1(x). Since K1(x) is made up of four similar components in
(63), the other components of q are defined by symmetry and translation, i.e., if ∂q2/∂z = −e−xU (x)/x then
q2(x, z) = q1(−x, z) and similarly q3(x, z) = q1(x − L , z), q4(x, z) = q2(x − L , z). Finally q(x, z) is assembled

q(x, z) = c1q1(x, z)+ c2q2(x, z)+ c3q3(x, z)+ c4q4(x, z). (74)

B.2 Wave-type singular potential

Another way to deal with the singular boundary terms is to use the solution of

�q = 0, z > 0, (75a)

qz + 4q = f (x), z = 0, (75b)

qz → 0, z → ∞, (75c)

which can clearly be expressed in terms of the integral

q(x, z) = − 1

2π

∫ ∞

−∞
f̂ (k)

|k| − 4
e−ikx−|k|zdk. (76)

We denote this integral for f (x) = exU (−x)/x by q1(x, z) and approximate it at z = 0 as

q1(x, 0) = −iF−1
{

arctan(k)

|k| − 4
− arctan(4)

k − 4
− arctan(4)

k + 4
− πk(1 − 2 arctan(4))

2(k2 + 1)

}

−F−1

{
log(1 + k2)

2(|k| − 4)
− log

√
17

k − 4
+ log

√
17

k + 4
− |k| log |k|

1 + k2

}
+ ie−4ix

2
(i arctan(4)+ log

√
17)sgn(x)

+ ie4ix

2
(i arctan(4)− log

√
17)sgn(x)− πe−|x |

4
(1 − 2 arctan(4))sgn(x)− F−1

{ |k| log |k|
k2 + 1

}
, (77)

where the first two terms are found using FFT and the rest are evaluated exactly. This is plotted in Fig. 8, where in
this and subsequent plots the von Kármán plate has been used, although in fact the difference between models is
minimal. As before, the other components of q(x, z) for f (x) = K1(x)may be defined by symmetry and translation,
and assembled as in (74).

Note that we do not have to be very careful in approximating this function, as it will turn out that we only
need q(x, 0) for 0 < x < L in the boundary-integral method. We can also use the integral formula to derive the
asymptotic behaviour of q(x, z), i.e., letting f (x) = K1(x) assembled according to (63), we obtain

lim
x→±∞ q(x, z) = ±

(α1

2
e4ix + α2

2
e−4ix

)
e−4z, (78)

where
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α1 = −c1

(
f̂1(4)+ i f̂2(4)

)
+ c2

(
f̂1(4)− i f̂2(4)

)
− c3e−4iL

(
f̂1(4)+ i f̂2(4)

)
+ c4e−4iL

(
f̂1(4)− i f̂2(4)

)
,

(79)

α2 = −c1

(
f̂1(4)− i f̂2(4)

)
+ c2

(
f̂1(4)+ i f̂2(4)

)
− c3e4iL

(
f̂1(4)− i f̂2(4)

)
+ c4e4iL

(
f̂1(4)+ i f̂2(4)

)
. (80)

and f̂1, f̂2 are given in (66).
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